Patterns of Virtual Reality Use and Associated Symptoms: A Comparative Study of Civilian and Military Users

Szerzők

  • Frankl Dániel

DOI:

https://doi.org/10.35926/HDR.2025.1.5

Kulcsszavak:

military training, immersive simulation, cognitive load, simulation technologies

Absztrakt

Virtual Reality (VR) technologies have become integral to modern military training, offering substantial advancements in operational preparedness, decision-making, and mission effectiveness. NATO forces, including the United States, the United Kingdom, and increasingly Hungary, have embraced VR solutions to improve joint interoperability and enhance realism in training scenarios, resulting in notable gains in threat identification accuracy and overall personnel readiness. However, the successful deployment of VR in military contexts necessitates an in-depth understanding of physiological and neurological considerations, such as cybersickness, cognitive overload, visual fatigue, and ergonomic strain, each of which can significantly impact soldiers’ cognitive performance and physical comfort. Empirical research conducted among military and civilian VR users reveals that military-trained
individuals exhibit distinct psychological resilience, improved stress management, and heightened neurological adaptability compared to civilians. These measurable differences reinforce VR’s value as a strategic training asset, particularly when supported by ergonomically optimized equipment and adaptive, neurophysiologically informed training protocols. Consequently, continued investment in human-centered VR development is essential to fully leverage the operational advantages offered by immersive training, enhancing both the efficacy and safety of military personnel in complex, real-world environments.

Információk a szerzőről

Frankl Dániel

Dániel Frankl is a PhD student at Óbuda University, Doctoral School on Safety and Security Sciences (ORCID: 0009-0002-5073-9412; MTMT: 10094319).

Hivatkozások

• Bymer, Loren, Maj.: DSTS: First immersive virtual training system fielded. U.S. Army, 1 August 2012. https://www.army.mil/article/84728/dsts_first_immersive_virtual_training_system_fielded (Accessed: 5/4/2025).

• Caserman, Polona – Garcia-Agundez, Augusto – Zerban, Alvar Gámez – Göbel, Stefan: Cybersickness in current-generation virtual reality head-mounted displays: systematic review and outlook. Virtual Reality, Vol. 25, 2021, 1153–1170. DOI: 10.1007/s10055-021-00513-6

• Dennison, Mark S. – Wisti, A. Zachary – D’Zmura, Michael: Use of physiological signals to predict cybersickness. Displays, Vol. 44, 2016, 42–52. DOI: 10.1016/j.displa.2016.07.002

• European Agency for Safety and Health at Work: Worker Exposure to Virtual and Augmented Reality and Metaverse Technologies: How Much Do We Know? Discussion paper, 2024. https://osha.europa.eu/sites/default/files/documents/worker-exposure-virtual-reality_discussion_paper_EN.pdf (Accessed: 5/4/2025).

• Epstein, Jake: Inside the virtual battles Ukrainian soldiers are fighting with top-of-the-line fake guns to train for real combat. Business Insider, 15 March 2025. https://www.businessinsider.com/how-ukrainian-troops-fight-fake-guns-prepare-for-real-combat-2025-3 (Accessed: 5/4/2025).

• Goldberg, Benjamin – Spain, Randall – Owens, Kevin – Lanman, Jeremy – Kwon, Paul, Col. – Gupton, Kevin – McGroarty, Chris – Butler, Paul: A Data Strategy for Data-Driven Training Management: Artificial Intelligence and the Army’s Synthetic Training Environment. Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), 2023.

• Goodwin, Gregory A. – Hoffman, Michael: Intelligent adaptive training in the synthetic training environment, 2020 update. In: Sinatra, Anne M. (ed.): Proceedings of the 8th Annual Generalized Intelligent Framework for Tutoring (GIFT) Users Symposium (GIFTSym8). US Army Combat Capabilities Development Command–Soldier Center, 2020, 113–119. ISBN 978-0-9977258-0-3.

• Hegedűs, Ernő – Szivák, Petra: A jövő digitális katonája és kognitív képességei – beszámoló a Digital Soldier 2.0 nemzetközi konferenciáról. Haditechnika, Vol. 53, No. 3 (2019), 52–57. DOI: 10.23713/HT.53.3.10

• Hirzle, Teresa – Fischbach, Fabian – Karlbauer, Julian – Jansen, Pascal – Gugenheimer, Jan – Rukzio, Enrico – Bulling, Andreas: Understanding, Addressing, and Analysing Digital Eye Strain in Virtual Reality Head-Mounted Displays. ACM Transactions on Computer-Human Interaction. Vol. 29, No. 4 (2022), 1–80. DOI: 10.1145/3492802.

• Kluge, Murielle G. – Maltby, Steven – Walker, Nicole – Bennett, Neanne – Aidman, Eugene Nalivaiko – Walker, Frederick Rohan: Development of a modular stress management platform (Performance Edge VR) and a pilot efficacy trial of a bio-feedback enhanced training module for controlled breathing. PLOS One, Vol. 16, No. 2 (2021). DOI: 10.1371/journal.pone.0245068.

• Kocsi, János Gyula – Kiss, Gergely László: Challenges of the Application of Lynx KF-41 Infantry Fighting Vehicle in the Hungarian Defence Forces. Hadmérnök, Vol. 16, No. 4 (2021), 25–40. DOI: 10.32567/hm.2021.4.3

• Kovács, Gergely: A védelmi szférában alkalmazható VR-alapú képzés/felkészítés lehetséges negatív fizikai és pszichológiai hatásai II. (Possible Negative Physical and Psychological Effects of VR-Based Training/Preparation in the Defence Sector II.) Hadmérnök, Vol. 18, No. 4 (2024), 31–51. DOI: 10.32567/hm.2023.4.3.

• Ito, Kodai – Tada, Mitsunori – Ujike, Hiroyasu – Hyodo, Keiichiro: Effects of the Weight and Balance of Head-Mounted Displays on Physical Load. Applied Sciences, Vol. 11, No. 15 (2021), 6802. DOI: 10.3390/app11156802

• Leite, Higor – Vieira, Leandro R.: The use of virtual reality in human training: trends and a research agenda. Virtual Reality, Vol. 29, No. 25 (2025). DOI: 10.1007/s10055-024-01093-x.

• Lele, Ajey: Virtual reality and its military utility. Journal of Ambient Intelligence and Humanized Computing, Vol. 4, 2013, 17–26. DOI: 10.1007/s12652-011-0052-4.

• Lokyan, Arsen – Baghdasaryan, Svetlana – Hovhannisyan, Hayk: Enhancing psychological training in military personnel: Modern approaches, systemic assessments and hands-on recommendations. Asian Journal of Psychiatry, Vol. 106 (104442), 2025. DOI: 10.1016/j.ajp.2025.104442

• Marlok, Tamás – Takács, Márk György: VR Training Opportunities in the Hungarian Defence Forces. Academic and Applied Research in Military and Public Management Science (AARMS), Vol. 23, No. 2 (2024), 19–37. DOI: 10.32565/aarms.2024.2.2.

• Miller, Earl K. – Cohen, Jonathan D.: An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, Vol. 24, No. 1 (2001), 167–202. DOI: 10.1146/annurev.neuro.24.1.167.

• Mousavi, Maryam – Jen, Yap Hwa – Musa, Siti Nurmaya Binti: A Review on Cybersickness and Usability in Virtual Environments. Advanced Engineering Forum, Vol. 10, 2013, 34–39. DOI: 10.4028/www.scientific.net/aef.10.34.

• Németh, András – Virágh, Krisztián: Virtuális valóság és haderő – katonai alkalmazási lehetőségek IV. rész. Haditechnika, Vol. 55, 2021, 2–7. DOI: 10.23713/HT.55.5.01.

• Reitz, Emilie – Richards, Robert: Optimum Dismounted Soldier Training Experience: Live or Virtual? I/ITSEC 2013.

• Remigereau, Alexis – Darses, Françoise – Dozias, Baptiste – Albentosa, Julie: Design and validation of a simulated multitasking environment for assessing the cognitive load on the infantry squad leader. Frontiers in Psychology, Vol. 15, 2024, DOI: 10.3389/fpsyg.2024.1433822

• Royal Navy News: Royal Navy Enters the Metaverse with New Virtual Reality Simulators. 14 February 2023. https://www.royalnavy.mod.uk/news/2023/february/14/20231402-vrbridge-sims (Accessed: 5/4/2025).

• Rozman, Jeremiah: The Synthetic Training Environment. Association of the United States Army, Spotlight 20-6, 2020.

• Sweller, John – Ayres, Paul – Kalyuga, Slava: Cognitive Load Theory. Springer, 2011. DOI: 10.1007/978-1-4419-8126-4

• UK Government: British Army tests innovative virtual reality training. 4 February 2019. https://www.gov.uk/government/news/british-army-tests-innovative-virtual-reality-training (Accessed: 5/4/2025).

• Varjo: Varjo XR-4 Achieves NATO Accreditation in Inzpire’s Cutting-Edge JTAC Simulator. 17 January 2025. https://varjo.com/press-release/varjo-xr-4-achieves-nato-accreditation-ininzpires-cutting-edge-jtac-simulator/ (Accessed: 5/4/2025).

• Virtualware: Virtualware’s VIROO capabilities shown at NATO Exercise. 29 September 2023. https://www.virtualwareco.com/news/viroo-showcased-at-nato-exercise-toxic-trip-2023/ (Accessed: 5/4/2025).

• Vlahovic, Sara – Skorin-Kapov, Lea – Suznjevic, Mirko – Pavlin-Bernardic, Nina: Not just cybersickness: Short-term effects of popular VR game mechanics on physical discomfort and reaction time. Virtual Reality, Vol. 28, 108, 2024. DOI: 10.1007/s10055-024-01007-x.

##submission.downloads##

Megjelent

2025-06-18

Hogyan kell idézni

Frankl, D. (2025). Patterns of Virtual Reality Use and Associated Symptoms: A Comparative Study of Civilian and Military Users. Honvédségi Szemle – Hungarian Defence Review, 153(1), 54–66. https://doi.org/10.35926/HDR.2025.1.5

Folyóirat szám

Rovat

Innovation Methodologies For Defence Challenges