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ABSTRACT: There are several types of the electrical power devices that are hardly known 
outside professional circles. One of them is the supercapacitor, which is very interesting 
attributable to its capabilities. Given its parameters, it can be considered unique, thus, its 
use in some special equipment is indispensable. With the spread of electricity, there will 
be more and more military equipment in which currently there is no alternative to its use.  
It is therefore well worth learning a bit more about it.

KEYWORDS: capacitor, supercapacitor, electrical energy storage 

SUMMARY OF CONVENTIONAL CAPACITORS AND THEIR FEATURES

Before starting to elaborate on supercapacitors, it is also worth reviewing the major features 
of traditional capacitors as these are more or less the same. Capacitors are electro-technical 
components that have been known for a long time. The first such device was the well-known 
Leyden jar. This was built by the German physicist, Ewald Georg von Kleist and the Dutch 
physicist working at the University of Leiden, Pieter van Musschenbroek independently 
from each other in 17451. This was the first device with the help of which static electricity 
could be stored. Thus, this device can be considered to be the antecedent of all power storage 
devices. The ancestor of the modern capacitors, the paper capacitor had already appeared 
by the late 1800s. By the 20th century, capacitors had become an integral part of everyday 
life attributed to the revolutionary developments taking place in the fields of electro-tech-
nology, electronics and microelectronics. Although it is not widely known, hundreds of such 
devices can be found in an average household either in the form of discrete circuit elements 
or integrated into a circuit board. Before moving on, I enclose a brief overview of physical 
quantities and their units used in the present paper:

Physical quantity Symbol SI unit

voltage U Volt (V)

electric current I Ampere (A)

electric charge Q Coulomb (C)

1	 Young, G. “Leyden jar”. Encyclopedia Britannica (online). 16 May 2013. https://www.britannica.com/technol-
ogy/Leyden-jar, Accessed on 19 January 2018.
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Physical quantity Symbol SI unit

resistance R Ohm (Ω)

capacitance C Farad (F)

energy W Joule (J)

power P Watt (W)

speed V meters per second (m/s)

mass M kilogram (kg)

The structure of the capacitor is rather simple as it consists of two electrical conductors, 
called plates and an insulating layer between them, called dielectric medium [2, p. 141]. If these 
plates are connected to direct voltage, they become charged, and the magnitude of the electric 
charges accumulated on the plates is proportional to the magnitude of voltage. The (DC) equa-
tion describing this goes as (1): Q=CU2 [2, p. 140], which clearly shows that capacitance3 is 
the major feature of such devices, namely a sort of proportionality factor between voltage and 
the quantity of charge. The more charge it can take at lower and lower voltage, the higher the 
capacitance is. If this is examined in terms of geometrical design, the bigger the surface of the 
plates is and the closer these plates are located to one another without leakage (i.e. the better 
the dielectric constant (insulating capacity) of the insulating layer is), the higher the value of 
capacitance is. The magnitude of capacitance can be deduced from equation (1) (2): C=Q/U (2).

The capacity of conventional, the so-called ‘dry’ capacitors used in practical electronics 
is merely pF and nF (10-12 and 10-9 Farad). Although it was patented in 19284, it was not until 
the 1970s that electrolyte capacitors, in which one of the plates was a conductive liquid called 
electrolyte, began to spread. Owing to the electrolyte, these devices are polarized, so these can 
only be used in DC circuits, but in terms of magnitude their capacitance exceeds that of dry 
capacitors and falls in the μF range (10-6 or one millionth Farad). The current energy of the ca-
pacitors is (3): W = ½CU22, that is to say, high energy goes with high voltage and capacitance. 
This already hints at the fact that the magnitude of energy stored by the largest devices with 
the highest capacitance manufactured for electronic purposes is only a few Joule making them 
unsuitable for providing the energy needed for the amount of work done.

Although the complete model of real capacitors is more complex, it is sufficed to include 
the below simple model as we are analysing only DC energy conditions. This model will 
prove to be useful later on: 

Figure 1: The simplified DC energy model of a capacitor (by the author)

2	 Gergely I. Elektrotechnika. Budapest: General Press, 2006.
3	 The applicable term is ‘capacity’, and the term ‘capacitor’ is derived from this.
4	 Dubilier, W. “Electric Condenser”, US Patent no. 468787.
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In the model, the symbol RL represents the imperfection of the dielectric medium. If 
a charged capacitor is left alone leakage of charge occurs through the dielectric medium. 
The resulting leakage current IL slowly discharges the capacitor. ESR symbolizes the loss 
of energy experienced in the case of the intended discharge of the battery or in the form of 
increased temperature upon charging.

A HISTORICAL OVERVIEW OF SUPERCAPACITORS5  
AND THE PHYSICS BEHIND
First in the 1950s, General Electrics was experimenting with porous carbon electrodes to de-
velop traditional capacitors, batteries and fuel cells as the coiled surface of the carbon elec-
trodes formed an extremely large surface, which proved to be highly beneficial in these devic-
es. In a certain double-layer constellation, extraordinarily increased capacitance was detected. 
In 1957, a patent was also issued, but its true significance was not recognized at that time and 
the experiments were discontinued6. In 1966, Standard Oil of Ohio staff continued the work, 
and even though they wanted to develop fuel cells, they already realized the potential for ener-
gy storage lying in this technology6. Eventually, the first laboratory instruments appeared in the 
1970s, but it was not until the turn of the millennium that the production technology reached 
the level which made the technology available for the general public.

Figure 2: A typical commercially available supercapacitor (Source: lerablog.org)

About 80-90% of the commercially available supercapacitors belong to the category 
of electrical double layer capacitors, i.e. EDLC7. The active carbon layer deposited on the 
electrodes and the electrolyte – given compact sizes – provide higher performance than the 
conventional capacitors do8. Later on, I will compare the supercapacitors and their direct 
rival technology, the batteries. It is important to note that in EDLCs charges are stored with 
the help of chemicals, but only in a physical way, and in contrast to the batteries, there are no 
chemical transformations involved. The reason why this has been pointed out is that in the 
case of other forms of supercapacitors, the so-called pseudo-capacitors, this distinction is no 

5	 Besides the term ‘supercapacitor’, the terms ‘ultracapacitor’, ‘supercap’ and ‘goldcap’ are also used in the Eng
lish language literature.

6	 Katsuhiko, N. and Simon, P. “New Materials and New Configurations for Advanced Electrochemical Capaci-
tors”. Electrochemical Society Interface 17/1. 2008. 34-37.

7	 Electric Double Layer Capacitor
8	 Zhong, C. Electrolytes for electrochemical supercapacitors. Boca Raton: CRC Press, 2016.
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longer obvious. In this case, the redox9 processes taking place on the surface of the carbon 
layer help bind charges8.

Some experts think that with the developments in the near future besides keeping the ben-
eficial features of the supercapacitors, low self-discharge and high-power density properties of 
batteries can also be reached10. In this article, it would not be fortunate to make predictions in 
this respect, so I will only examine the currently available supercapacitor technology. 

Figure 3: The structure of EDLC (Source: RS Components Hungary)

A COMPARISON OF SUPERCAPACITORS AND BATTERIES 

In order to be able to find the place of supercapacitors among the various modes of power 
storage, they need to be compared with the most common available technology, namely with 
batteries. As it has been mentioned above, chemical processes take place in batteries when 
charging or discharging11. These processes, however, are never 100% as electrodes wear out, 
the battery ages, and loses capacity during each and every charge-discharge cycle12. A bat-
tery can be regarded as depleted, if its capacity falls below 80% of the nominal value. This 
varies from one battery technology to another, but this generally occurs after 103 cycles. 
In contrast, the aging of capacitors based on physical processes is minimal, generally with 
a lifetime of at least 106 cycles. As opposed to physical processes, chemical processes are 
highly dependent on the temperature of the environment. It is a well-known fact that while 
the parameters of batteries deteriorate in line with the decrease of temperature, capacitors are 

9	 Reduction – oxidation
10	Guerra, M. “Can Supercapacitors Surpass Batteries for Energy Storage?” Electronic Design, 16 August 2016. 

http://www.electronicdesign.com/power/can-supercapacitors-surpass-batteries-energy-storage, Accessed on 22 
January 2018.

11	The dry battery is an electrochemical storage device, but as there is only one cycle, this technology cannot be 
regarded as a direct rival to supercapacitors.

12	Végvári Zs. “Akkumulátorok a gyalogos lövészkatonák felszerelésében, a fejlesztés lehetséges irányai”. Műsza-
ki Katonai Közlöny 26/2. 2016. 85-101.

	 https://mkk.uni-nke.hu/document/mkk-uni-nke-hu/2016_2_007_Vegvari%20Zsolt.pdf
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significantly less susceptible to this, in the case of certain types the temperature/ capacitance 
graph is basically a straight line.

Despite the above-mentioned non-beneficial properties, the market of electric storage devic-
es is still dominated by batteries. There are two reasons for this: one being that the energy density 
(i.e. the energy that can be stored in unit mass or volume) of batteries largely exceeds that of 
the supercapacitors, and the other being the self-discharge. To explain this, the model shown in 
Figure 1 should be invoked and applied to electrochemical storage devices. The magnitude of 
the leakage current in the case of batteries and supercapacitors follows a voltage-dependent and 
temperature-dependent curve, but while in the case of batteries it usually takes months for the 
charge to drop below 80%, in the case of supercapacitors it is usually a matter of hours13. 

It is the dimension of power density (i.e. how much power it can deliver at a given 
moment) in which supercapacitors perform very well. To understand this, we need to look 
at the model in Figure 1 again. When charging and discharging, the device has a so-called 
internal resistance, in other words, equivalent serial resistance (ESR). This resistance needs 
to be overcome by the charging and discharging current. For batteries, this value is typically 
around 100mΩ, whereas for supercapacitors this value falls between 100µΩ and 1mΩ (for 
the time being let us calculate with the least beneficial value of 1mΩ). Let us suppose, that 
our devices (one battery and one supercapacitor) are charged to the same voltage value level 
(now let this be 2V) and discharged with 0.1, then 1, 10, and 100A.

Applying Ohm’s law, the voltage on the internal resistance can be calculated as follows 
(4): U=IR, and the thermal dissipation on the resistance is (5): P=IU. If relation (4) is insert-
ed into the latter, one ends up having the relation (6): P=I2R. If the generated heat output is 
entered into a table, the below can be seen:

Table 1: Thermal dissipation at various discharging currents in a battery  
and in an EDLC (by the author)

ESR Current 0,1A 1A 10A 100A

Battery 100mΩ Thermal 
Dissipation

1mW 100mW 1W 1kW

EDLC 1mΩ 10µW 1mW 100mW 10W

It is even more interesting, if one takes a look at how much voltage out of the nominal 
voltage of 2V falls on the internal resistance and the load:

Table 2: Voltage on internal resistance at various discharging currents in a battery and in an 
EDLC (by the author)

ESR Current 0,1A 1A 10A 100A

Battery 100mΩ Voltage at 
ESR

10mV 100mV 1V –

EDLC 1mΩ 100µV 1mV 10mV 100mV

It can be clearly seen that if higher performance is required from the device, the battery 
starts to warm up drastically, and less and less voltage is delivered to the load. In this case, 
100A cannot be obtained from the 2V cell, whereas the supercapacitor – besides tolerable 

13	Yu, A., Chabot, V. and Zhang, J. Electrochemical supercapacitors for energy storage and delivery: fundamentals 
and applications. Boca Raton, FL: CRC Press, 2013.
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loss of heat – can still supply the load with 1.9V. It is also true that the battery under 1A 
constantly maintains 1.9V until total discharge while the voltage of the supercapacitor con-
tinuously decreases. 

What if we want to charge our devices? The faster we want to charge a device, the bigger 
charging current we use. While in the case of the battery voltage higher than the nominal 
value has to be switched on due to the big internal resistance, the supercapacitor can practi-
cally be charged with the nominal voltage. The increase of charging current and that of the 
voltage are hindered by the fact that the high temperature generated by dissipation damages 
the device. As a result, charging batteries is a quite time-consuming process.

The chargeability of the supercapacitor is hardly limited by dissipation, due to meagre 
internal resistance one can expect a linear charging curve, and the following formula can be 
applied: (7): I=C*dU/dt [8, p. 284]. Assuming that our supercapacitor is 100 Farad and is 
charged with 10A, its voltage increases by 100 mV per second, thus it can be charged within 20 
seconds. If 100A charging current is applied, the duration of charging is altogether 2 seconds. 

Table 3: A comparative overview of basic battery and EDLC technologies (by the author)

Equipment

Cubage- 
related  
Energy 
Density

Mass-relat-
ed Energy 
Density

Power Density Temperature 
Dependency

Life-
time

Self-dis-
charge

Ba
tt

er
y

Pb acid 100- 
150 kJ/l 90-100 kJ/kg 150-200 W/kg significant 500 

cycles

4-6% 
per 
month

NiCd, 
NiMH

500- 
1000 kJ/l 30-500 kJ/kg 200-1000 W/kg very strong 1-2000 

cycles

20-30%
per 
month

Li-ion 2000-
2500 kJ/l

800- 
1000 kJ/kg 300-350 W/kg very strong

500-
1500 
cycles

2-3%
per 
month

LiFePO4 6-700 kJ/l 3-400 kJ/kg 150-200 W/kg significant 2-4000 
cycles

3-4%
per 
month

ED
LC

porous 
graphene 5-700 kJ/l 30-40 kJ/kg 10-15 kW/kg

minimal 105-106 

cycles14
5-25%
per hourgraphite-

oxide15
800- 
1000 kJ/l 40-50 kJ/kg 15-20 kW/kg

MILITARY APPLICABILITY OF SUPERCAPACITORS 
It can be stated that batteries are preferably to be used under circumstances where there is no 
possibility for charging, and besides this, in fields where it is important to store energy given 
the smaller mass and volume. Military applications of batteries include radio appliances, 
lamps or most electricity powered devices and equipment. 

14	Since one million cycles are difficult to interpret, and due to the short duration of cycles their use is basically 
constant, the duration of supercapacitors is usually given in hours, which is minimum 10,000 hours.

15	The term is used in an abbreviated form, the complete name of the technology is activated microwave exfoliated 
graphite oxide (a-MEGO)/1-ethyl-3-methylimidazolium bis(trifl uoromethylsulfonyl)imide.
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Where to use supercapacitors then? In applications where the charge can more or less 
be maintained continuously, but at times we want to obtain enormous amounts of energy 
impulsively in a very short period of time. Today, in cutting edge (sometimes pilot) systems 
these areas of application already exist. Although it is not widely known, supercapacitors 
have already set their feet in military technology. Let us take a look at these systems. 

1. Laser weapons 

Laser weapons no longer exist only in science fiction. The United States, Russia and presum-
ably China have systems with which enemy aircraft, ballistic missiles and anti-ship ballistic 
missiles are destroyed with a laser beam16. It is apparent that the energy needed is generated 
by a generator rotated by the engine of the aircraft or that of the ship, but how the energy is 
transmitted to the weapon. In the case of a fast-moving distant target (i.e. an aircraft, not to 
mention a missile), it is not possible to hold the laser beam on the target, therefore, the en-
ergy that can destroy the target must be delivered in the form of single radiation that occurs 
in some milliseconds. Such type of ‘firing’ laser, which does not only disrupt the navigation 
of the target but it also destroys it, presupposes approximately 10-100kW impulse perfor-
mance. Currently, only supercapacitors are capable of accumulating electric power for a few 
seconds and delivering it in a matter of milliseconds. 

Figure 4: USS Portland belonging to San Antonio-class will certainly be equipped with the laser 
(shown in the picture) developed against sea skimming anti-ship missiles17 

16	Ványa L. Irányított energiájú fegyverek. Budapest: Nemzeti Közszolgálati Egyetem, 2013.
17	Insinna, V. “US Navy’s next amphibious warship to get laser weapon”, Defense News, 10 January 2018. https://

www.defensenews.com/digital-show-dailies/surface-navy-association/2018/01/10/navys-next-amphibious-war-
ship-to-get-laser-weapon/, Accessed on 20 January 2018.



45Logistics

2. Electromagnetically accelerated projectiles, i.e. railgun 

The situation with the railgun is similar. What makes this weapon interesting is that while the 
laser proves to be efficient against flying objects (most of the aircrafts and the missiles are 
not armoured, in addition, minor damage can entirely cripple a fast-moving object), railgun 
is efficient against bunkers and tanks. The kinetic energy of the 12.7 kg projectile hitting 
the target at multiple sound speed corresponds to the impact of several kilograms of TNT18.

“The introduction of the railgun was postponed in the last minute supposedly due to 
financial reasons, but based on the current state of the weapon, it is already deployable and 
commensurate to similar-purpose conventional ship cannons in efficiency. On the basis of 
the published results, the ready-made railgun is capable of launching 10 HVP type projec-
tiles per minute at an approximate 7.5 times the sound speed (7.5 Mach). This means nearly 
40 MJ of muzzle energy for which – ignoring the losses – a capacitor capable of delivering 
minimum of 200MW electrical power is needed. Taking the planned firing speed into con-
sideration, one charging cycle takes 5-6 seconds, and the required 40-50MW power demand 
puts an immense burden on the electrical system of the carrying platform. By comparison, 
if all electrical appliances of an average household are simultaneously switched on, only 
4-6 kW is required meaning that the power demand of the railgun commensurate with that 
of a small town”19.

Figure 5: One of the first test shootings of the Railgun (Bae Systems)

18	Végvári Zs. “Elektromágnesesen gyorsított lövedékek a tüzérség eszköztárában, A Bae Systems EM railgun-ja. 
1. rész”. Haditechnika 51/1. 2017. 28-31. DOI: 10.23713/ht.51.1.06

19	Végvári Zs. “Elektromágnesesen gyorsított lövedékek a tüzérség eszköztárában, A Bae Systems EM railgun-ja. 
2. rész”. Haditechnika 51/2. 2017. 18-22. DOI: 10.23713/ht.51.2.04
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3. Catapults of aircraft carriers 

Experts from the few countries deploying aircraft carriers have been long waiting for the 
introduction of the electromagnetic catapult because the currently used steam catapult 
has many weaknesses. The steam powered catapult is very big in size, rather heavy, and 
a very complicated system. For seawater is an extremely aggressive corrosion agent, the 
necessary steam is developed from desalinated water, and desalination is a very ener-
gy-intensive process. The system is supplied with the steam from the turbines, thus there 
is no need for heating a separate boiler, but constant level of pressure must be maintained 
in the system to ensure preparedness, moreover, between two launches it takes quite a 
lot of time for the system to reach the proper level of steam pressure again. Power need-
ed for the aircraft of various weights can only be roughly controlled, and the enormous 
pulling force puts a big strain on the structure of the aircrafts. In addition to this, the 
high-pressure hot steam runs the high risk of causing accidents, plus the system also has 
high maintenance needs20.

The latest super aircraft carrier of the United States, the USS Gerald Ford (CVN-78), 
currently undertaking its sea trials, is equipped with electromagnetic launch units or systems 
(EMALU or EMALS21) replacing the steam catapult. Despite the many initial problems, in 
principle, these are free of the shortcomings of the steam catapult. Here, the energy needed 
for the launch is stored kinetically in huge rotating rotors. It is obvious that research and de-
velopment will be focused on the possible substitution of mechanical parts with high space 
and maintenance needs22.

Figure 6: USS Gerard Ford with EMALS (General Atomics)

20	Allamadani, R. and Chen, F. “Electromagnetic Aircraft Launching Unit (EMALU)”. Presentation. ASEE 2014 
Zone, Bridgeport, 2014.

21	Electromagnetic Launch Unit/System
22	Yu, Chabot and Zhang. Electrochemical supercapacitors for energy storage and delivery…
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4. Vehicle drive train 

More and more experts are dealing with hybrid and purely electricity driven vehicles. At the 
current level of technology, only batteries can store the energy needed in such vehicles, but 
supercapacitors can improve a few parameters of the system. As it has been pointed out ear-
lier, at a higher load the loss of batteries significantly grows, thus, in theory a supercapacitor 
functioning as a buffer can have beneficial effects on the efficiency of the system23. 

As the energy density and power density of the batteries deteriorate at low temperatures, 
a buffer supercapacitor would provide the starting current needed for the cold-start of a 
conventional diesel engine. The so-called hybrid batteries produced for such purposes are 
currently available24.

Figure 7: The well-proven Oshkosh HEMTT is also available with electric drive (TruckTrend)

The American Oshkosh Corporation known for its military vehicles went even further. 
The newest, electricity powered version of the HEMTT25 military vehicle – first produced 
35 years ago – has been available in its product range since 2011. HEMTT A3 is equipped 
with a 470LE Cummins diesel engine, which does not only drive the wheels but it also drives 
a 340kW generator which constantly charges a series of supercapacitors of 1.9 MJ nominal 
capacitance, and drives four AC engines of 480V (one per each axle) through an inverter26. 

23	Mihalczuk, M., Grzesiak, L. M. and Ufnalski, B. “A lithium battery and ultracapacitor hybrid energy source for 
an urban electric vehicle”. Przeglad Eelektrotekniczny 88/4. 2012. 158-162.

24	“Maxwell Technologies Engine Starting Module”. Maxwell Technologies. http://www.maxwell.com/esm/de-
fault.aspx, Accessed on 22 January 2018.

25	Heavy Expanded Mobility Tactical Truck
26	Thompson, J. “The Diesel-Electric Hybrid HEMTT A3 Lean by OSHKOSH – Diesel Power Magazine”. Truck 

Trend. 1 July 2011. http://www.trucktrend.com/cool-trucks/1107dp-diesel-electric-hybrid-hemtt-oskosh-a3/, 
Accessed on 28 November 2017.
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Oshkosh claims that the ProPulse version consumes 20% less fuel than the diesel driven 
version with the same capacity, but this is not the most remarkable novelty of the system. 
With the help of the supercapacitor, the ProPulse is suitable for supplying military facilities, 
communication stations, military medical units, etc. with medium-level consumption needs, 
but it is also capable of launching a 120kW electric power-impulse making it an ideal plat-
form for radars, land-based laser or railgun weapon systems.

Figure 8: The structure of HEMTT ProPulse (A – generator, B – diesel engine,  
C – supercapacitors, D – AC engines, TruckTrend)

CONCLUSION 

Today it is not always the military research and development that represents the leading edge 
of innovation. It is sufficed to take the smart devices, IoT, or electromobility as an example. 
Society’s ever-growing demand for electric power and desire for mobility are a lot stronger 
than the demand of the armies. As a consequence, one of the most intensely researched 
fields of science has been the storage of electric power. Everyone wants to have a storage 
device, which has properties such as huge capacity, high power output and increased resist-
ance to the cold. At this moment, it cannot be foreseen if there will be batteries capable of 
power output similar to that of supercapacitors, or there will be supercapacitors with higher 
capacity and with the ability of staying charged for months. Hybrid batteries may spread. It 
is certain that supercapacitors are already here, and other technologies are not suitable for 
meeting special military needs at the moment. In all likelihood, supercapacitors will be more 
frequently used in the armed forces in the future.
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