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1	 A szabad hossz alatt értendő az a fegyverből le/kilógó hevederhossz, amely súlyerejénél fogva közvetlenül terheli az adogató mechanizmust, valamint amelyet a léptetés során 

közvetlenül kell gyorsítani, ui. a rakaszba behajtogatott hevederrészek az adogatási folyamat során nyugalomban maradnak.
2	 Az utolsó máltai keresztmechanizmust alkalmazó fegyverek a DSK géppuskák korai változatai voltak. A nagy helyigényű máltai keresztmechanizmus az acélelemekből készült 

hevederelemek elterjedésével szorult háttérbe, ui. ezeket a lánctagokat már lehetett körmökkel továbbítani, a gyöngyvászon jellegű szövethevederekkel ellentétben. Előnye 
a mechanizmusnak, hogy nem tartalmaz lengő tömegeket, ezért a kifejezetten nagy tűzütemű, Gatling-rendszerű, külső meghajtású fegyvereknél továbbra is egyeduralkodó, 
mivel itt a nagyobb geometriai méretek másodlagos jelentőségűek.

HEVEDERLÉPTETŐ KÉNYSZERPÁLYÁK

BEVEZETÉS
A sorozatlövő fegyverek töltényeinek elhelyezésére több megoldás lé-
tezik, de két, döntően más megközelítésű műszaki megoldás terjedt el. 
Az egyik a lőszerek társzerkezetbe való helyezése, a másik a lőszerek 

hevederezése. Míg az első esetben a  lőszereket szinte minden eset-
ben megfeszített rugó tolja adogatási pozícióba, ezért a befogadható 
lőszermennyiség elméletileg is korlátos, addig a hevederezett lőszerek 
darabszáma korlátlan lehet, ha a heveder szabad hosszát maximalizál-
ni tudjuk1. A hevederezett lőszerek alkalmazása a kifejezetten sorozat-
lövésre tervezett fegyverekre jellemző: a  gépágyúkra, géppuskákra, 
automata gránátvetőkre és ritkábban a  golyószórókra. A  hevedere-
zett lőszerek alkalmazásának azonban van egy nem elhanyagolható 
hátránya: befogadásukra és léptetésükre külön mechanizmust kell 
a fegyverhez hozzárendelni, tervezni. Ezek a mechanizmusok jellem-
zően kétféle elven működhetnek. Az egyik, a mára már lényegében el-
feledett máltai keresztmechanizmus2, a másik a lineáris mozgással ve-
zérelt egy- vagy többcsuklós mechanizmusok, amelyek jelenleg szinte 
egyeduralkodók.

A többcsuklós mechanizmusok meglehetősen bonyolult kinemati-
kájuk ellenére régóta alkalmazott megoldások. Előnyük, hogy a pálya 
elfordulása mellett (részben helyett), annak lineáris eltolásával bizto-
sítják a mechanizmus emelését, mintegy alkalmassá téve ezzel a me-
chanizmust tisztán lineáris mozgások megvalósítására. Az 1., a 2. és a 3. 
ábra az RPD golyószóró mechanizmusát szemlélteti, a végállásokban.

Látható, hogy az RPD golyószóró mechanizmusa kettő darab len-
gőkarral rendelkezik, amely kinematikai leírása összetett, ezért rövid 
vizsgálatunkat egy egylengőkaros műszaki megoldásra korlátozzuk – 
annak egyszerűsége miatt –, de ebből általános következtetéseket tu-
dunk levonni, amelyből már könnyedén levezethetünk bármely speci-
álisabb, összetettebb konstrukciót is.

A mechanizmus mechanikai terhelését vizsgálva megállapíthatjuk, 
hogy azt a heveder behúzása közben éri a  legnagyobb terhelés, így 
annak a vezérlőpályáját is. Feladatunk tehát, hogy a heveder behúzá-
sánál meghatározzuk a hevederkocsi (a továbbiakban: csúszka) kívánt 
mozgásjellemzőit, ennek birtokában pedig megadjuk a kényszerkap-
csolatban álló lengőkar mozgását. A  lengőkar mozgásfüggvényeinek 
ismeretében kiszámítjuk a látszólagos pályagörbét, amely a lengőka-
ron mint valódi pálya jelentkezik.

1. ÁBRA. Az RPD golyószóró – oktatási célból – preparált léptetőszerkezetének alulnézeti 
képe (A szerző felvétele)

Összefoglalás: A tanulmány egy egyszerű, egy darab lengőkarral rendelkező 
hevederléptető mechanizmus kényszerpályájának kinematikai leírásával fog-
lalkozik. A  szerző bemutatja egy adott gyorsulásfüggvénnyel és geometriai 
kezdeti-, illetve végértékkel meghatározott kényszerpálya előállítását, számí-
tási összefüggéseit. Első lépésben a számításokat analitikus úton tárgyalja és 
állítja elő a megoldásokat, közvetlen CAD-es 3D-s modellezésre is felhasznál-
ható formában. A szerző a műszaki problémát egy látszólag más módszerrel 
is megoldja, amely a  gépészeti gyakorlatban régebben gyakran alkalmazott 
eljáráson alapul. A nem inerciarendszerekben értelmezett d’Alambert-féle já-
rulékos erők alkalmazásával felírt mozgásegyenletek megoldásával is előállítja 
a mechanizmus kényszerpályáját. Megmutatja a két módszerrel előállított pá-
lyaalak azonosságát, ezzel adva a leendő tervezők kezébe egy tisztán analitikus 
és egy numerikus megoldási módszert.

Kulcsszavak: hevederléptető mechanizmus, kinematikai kényszerpálya, opti-
malizált kényszerpálya, bütykös mechanizmus, automata fegyver

Abstract: This paper deals with the kinematic description of the cam pro-
file of a simple single-piece rocker arm belt drive mechanism. The author pre-
sents the generation and the computational relations of a cam profile defined 
by a given acceleration function and a given initial and final geometric value. 
In a first step, the calculations are discussed analytically and solutions are pro-
duced in a form that can be used for direct CAD 3D modelling. The author also 
solves the engineering problem by an apparently different method, based on 
a procedure that has been used preferentially in mechanical engineering prac-
tice in the past. He also produces the cam profile of the mechanism by solving 
the equations of motion written using d’Alambert’s constraint forces inter-
preted in non-inertial systems. The identity of the cam profile generated by 
the two methods is shown, thus providing prospective designers with a purely 
analytical and a numerical solution method.
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TANULMÁNYOK

FELADATOK
1. �a csúszka adott gyorsulás célfüggvényéből és a geometriai 

kezdeti- és végértékekből meg kell határoznunk a csúszka 
mozgásfüggvényeit;

2. �a csúszka mozgásfüggvényeiből előállítjuk a lengőkar mozgásfügg-
vényeit, a mechanizmus geometriai összefüggéseinek segítségével;

3. �analitikus és egy érdekesebb numerikus módszerrel kiszámítjuk 
a látszólagos pályagörbét;

4. �CAD3 rendszerben elkészítjük a vezérpályát.

FELHASZNÁLT SZAKIRODALOM
Munkánk során több meghatározó forrás anyagát tanulmányoztuk. 
Johannes Volmer [1] a  gépiparban régebben meghatározó szerepet 
betöltött bütykös mechanizmusokról írt összefoglaló alapművében 
a kényszerpályák kinematikai és dinamikai vizsgálatainak, a mozgások 
elemzésének és a gépelemek geometriai tervezésének a részletes ki-
fejtését találjuk. Külön fejezetben tárgyalja az itt is meghatározó, ún. 
mozgásfeladatokat, ezért műszaki problémánk megoldására ennek 
a műben ajánlott módszertant használjuk.

3	 Computer Aided Design: számítógéppel támogatott tervezés.
4	 Cam: itt „bütykös mechanizmus”. Nem azonos a „számítógéppel támogatott gyártás” rövidítéseként elterjedt CAM betűszóval.
5	 Az elméleti hevederosztás mindig kisebb, mint a valóságos, ui. a lánctagok hézaggal kapcsolódnak, amelyek a húzás alatt álló hevederen növelik az osztás értékét.
6	 A szabad hevederhossz – rakaszból történő tüzelés esetén – az adogatási pozícióban lévő, ill. a rakaszban már függesztett töltény közötti heveder-ívhossz. Ez normál esetben 

pár tíz centiméter. De amennyiben a felhasználó úgymond „rambózik”, azaz álló helyzetben tartja a fegyvert és földig lelógó hevederrel tüzel, akkor ez a hossz kb. 2 méter. 
Ha emellé még tüzel is, akkor ez akár tízszeres túlterhelést is jelenthet, amit érdemes figyelembe venni.

7	 A heveder mozgatása gátolt, ha a szabad hevederszakasz valamely része valamilyen objektív okból megakad.

Újabb és részletesebb szakirodalom Harold A. Rothbart [2], Cam4 
Design Handbook című könyve, amely a mai kor szakirodalma, annak 
matematikai formalizmusa mellett. Részletesen tárgyalja a különböző 
kényszerkapcsolatok mechanikai viszonyait, kitérve az alap- és a mó-
dosított pályaalakokra, ismertetve azok tulajdonságait, alkalmazási 
területeit. Útmutatást ad a  jelenlegi technikai színvonalon elvárható 
tervezési módszerekről, a pályaoptimalizációs eljárásokról.

A léptetőmechanizmusok konstrukciós megoldásait részletesen 
tárgyaló alapmű [3] George M. Chinn ötkötetes összefoglalója. A ki-
advány a múlt század ’50-es éveiig megvalósított géppuskák és gé-
págyúk konstrukciós kialakításáról ad alapos ismertetést.

Fontos megemlíteni Peter Dannecker művét [4] a  lőfegyverek zá-
rolási mechanizmusáról, amelynek sematikus ábráit tanulmányozva 
nagy segítségünkre volt a saját ábrák elkészítésében.

A feladat egyenletrendszereinek megoldásait, ábráinak elkészítését 
a Maple szimbolikus matematikai editorral végeztük, amely progra-
mozásához André Heck művét [8] hívtuk segítségül.

A MŰSZAKI PROBLÉMA
Az adogatási folyamat részeként a  hevederezett lőszerek soron 
következő tagját adogatási pozícióba kell mozdítani, általában a 
csőtengely alá valamivel több, mint egy hevederosztásnyit5 mozgat-
va a szabad hevederszakaszt. A mozgatás során a szabad heveder
hossz6 és az esetleges gátlások7 függvényében jelentős terhelések lép-
nek/léphetnek fel. A pozícióba mozgatáshoz először fel kell gyorsítani 
a csúszkát (és vele együtt a szabad hevederszakaszt), majd a mozgást 
vissza kell fékezni mindaddig, amíg a soron következő töltény adoga-
tási pozícióba nem kerül. Könnyen belátható, hogy az adogatószerke-
zet léptetőmechanizmusa a gyorsítási szakaszban kapja a legnagyobb 
terhelést, mivel ekkor a szabad hevederszakaszt is gyorsítani kell, el-
lentétben a lassítással. Lassításkor ugyanis a szabad hevederszakasz 
(mint láncelemek sokasága) nem tud erőt kifejteni a  léptetőmecha-
nizmusra.

Célszerű a mozgástartományokat nem egyenlő arányban felvenni, de 
ez (lásd részletesebben a [6] hivatkozásban) nemcsak a számításainkat, 
hanem a léptetőkar CAD tervezését is jelentősen megnehezíti. Mivel el-
ső lépésben a megfelelő célfüggvény meghatározásával kell kezdenünk, 
ezért fontos eldönteni, hogy szimmetrikus avagy aszimmetrikus jellegű 
kocsimozgást szeretnénk‑e. A továbbiakban egy aszimmetrikus jellegű, 
de analitikusan kétszer integrálható gyorsulásfüggvénnyel rendelkező 
mechanizmus számításait mutatjuk be példaként.

MODELLÁLLÍTÁS
Kinematikai rendszerünkre az alábbi megszorításokat tesszük:
• �a zárkeret vezetőcsapjának mozgása a csúszka mozgására merőleges;
• �a zárkeret vezetőcsapja egyenes vonalú és egyenletes mozgást végez;
• �a 3 dimenziós álló és a  szintén 3 dimenziós forgó, Descartes-féle, 

jobbsodrású koordinátarendszert a  lengőkar forgástengelyén rög-
zítjük közös origóval. A koordinátarendszer x tengelye a vezetőcsap 
előremozgásával azonos irányú és értelmű, z tengelye pedig a lengő-
kar fogástengelyével azonos és a lengőkar szögsebességvektorával 
egyező értelmű (lásd: 4.a, 4.b ábrák).

2. ÁBRA. Az RPD golyószóró léptetőmechanizmusa axonometrikus nézetben  
(A szerző szerkesztése)

3. ÁBRA. Az RPD golyószóró léptetőmechanizmusa vetületi nézetben  
(A szerző szerkesztése)
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A CSÚSZKA GYORSULÁSFÜGGVÉNYÉNEK  
ELŐÁLLÍTÁSA
Ahhoz, hogy a csúszka lágy indítását és megállítását biztosítani tud-
juk, a következő elvárásokat kell megfogalmaznunk a csúszka kulis�-
szájában lévő mozgatócsapra:
1. �a mozgatócsap mozgása során az érintkező felületeken se ütésszerű, 

se lökésszerű terhelés ne keletkezzen;
2. �a csúszka gyorsulása egyetlen függvénnyel leírható legyen;
3. �a csúszka gyorsítása és lassítása közötti váltás – a bejárt útra vonat-

koztatva – általános, de az általunk megadott pozícióban legyen.
Az első kikötés teljesülésének szükséges feltétele, hogy a csúszka 

gyorsulásfüggvényének teljes mozgástartományon vett integrálja 
zérus:

 
 

� (1)
vagy másképpen:

 
 

� (2)
ahol tz a gyorsulásfüggvény második zérushelyéhez tartozó időpilla-
nat, így t1 és tz között a mozgás gyorsuló, tz és t2 között pedig lassuló.

További szükséges feltételek a gyorsulásfüggvény tartományon 
belüli korlátossága és folytonossága, amelyeket a 2. kikötésünknek 
megfelelő analitikus célfüggvények kiválasztásánál kell szem előtt 
tartanunk.

Ahhoz, hogy a zérus kezdeti és végértékek, a gyorsítás és a lassítás 
közötti átmenet helye, valamint az elemi függvény feltételek egyszer-
re teljesüljenek, egy legalább negyedrendű polinom már megfelelő vá-
lasztás. A legalább negyedrendű polinom azért szükséges, mert az ál-
talunk megfogalmazott megkötések pontosan négy darab, egymástól 
független matematikai egyenlettel írhatók le8. Ezeknek az egyenle-
teknek akkor létezhet pontosan egy megoldása, ha a polinomiális cél-
függvénynek pontosan négy szabadságfoka van. Az így megvalósu-
ló mozgások azonban nem minden esetben elégítik ki az itt meg nem 
fogalmazott monotonitási kritériumokat, így nagy zéruspont-eltolású 
pályák esetén a pályaalak elfajulhat (lásd 6. ábra). Mivel a polinomok 
véges tartományokon mindig korlátosak és folytonosak, valamint 
analitikusan tetszőlegesen sokszor integrálhatók, ezért a geometriai 
kötöttségek ismeretében a csúszka másik két mozgásfüggvénye is 
mindig előállítható.

Legyen most a paraméteres gyorsulásfüggvényünk egy hatodren-
dű polinom, amelynek lassító szakasza a teljes mozgástartomány egy 
általános pontjánál (a mintapéldában 67%-ánál) kezdődik. Ennek pa-
raméteres egyenlete:

acs(t) = a0 + a1 · t + a2 ∙ t2 + a3 ∙ t3 + a4 ∙ t4 + a5 ∙ t5 + a6 ∙ t6 .� (3)

Belátható, hogy a koordinátarendszer jelenlegi megválasztása mellett 
az a0 paraméter értéke zérus, mivel a gyorsulásfüggvényünk csak eb-
ben az esetben adhat a mozgás kezdetén zérus értéket.

A sebesség- és az útfüggvény definíciószerűen:

8	 A négy egyenletből kettő, a két darab nem nulla értékű gyökre felírt egyenlet, egy a sebesség végértékére felírt egyenlet, valamint a negyedik a mozgás végállapotára felírt el-
mozdulás egyenlete.

9	 A rántásfüggvény az útfüggvény harmadik idő szerinti deriváltja, amelyet az angolszász terminológia „jerk”, a német „Shock” néven illet.

 

� (4)
 

� (5)

ahol Cv és Cy a kezdeti-, illetve végértékekből meghatározandó kons-
tansok. Mivel a sebességfüggvénytől elvárjuk, hogy a mozgás kezde-
tén zérus legyen, valamint az útfüggvénytől, hogy a mozgás ycs1-ből 
induljon, így megállapíthatjuk, hogy Cv = 0 és Cy = ycs1.

Az ismeretlen 6 darab paraméter meghatározásához hat független 
egyenletet kell találnunk. A gyorsulásra fel tudunk írni kettőt, a sebes-
ségre és az útra egyet-egyet. A fennmaradó két egyenlethez meg kell 
adnunk az útfüggvény rántásának9 egyenletét, amely a gyorsulás idő 
szerinti deriváltfüggvénye:

� (6)

A pálya rántásának pillanatnyi értéke a gyorsulásfüggvény meredek-
ségét adja. Ennek a kezdő- és a végpontokra megadott értékeivel írjuk 
fel a fennmaradó két egyenletet.

A kezdeti és végértékegyenletek a pálya rántására:

Jcs(t1) = j1 ,� (7)

Jcs(t2) = j2 ,� (8)

ahol a j1 és j2 értékek általunk – önkényesen, de egyben észszerűen – meg-
határozott mennyiségek, amelyek megfelelő megválasztásával a polinom 
számunkra érdektelen gyökei a vizsgált tartományon kívül tarthatók, el-
kerülendő a 6. ábra szerinti elfajuló mozgásfüggvények kialakulását.

A gyorsulás a pálya zérus- és végpontjában is nulla:

acs(tz) = 0 ,� (9)

acs(t2) = 0 .� (10)

A sebesség a  pálya végpontjában nulla, az  útfüggvény a  kezdő-
pontban ycs1 értékét veszi fel:

vcs(tz) = 0 ,� (11)

scs(t1) = ycs1 .� (12)

A hat egyenlet megoldásával a1, a2, a3, a4, a5 és a6 értéke ismertté válik, 
így a feltételeket kielégítő útfüggvény – scs(t) – megadható. A nyol-
cadrendű útfüggvény rántásának – jcs(t) –, gyorsulásának – acs(t) –, 
sebességének – vcs(t) – és elmozdulásának – scs(t) – egységre normált 
közös diagramját az 5. ábra mutatja.

A FORGÓ 123 KOORDINÁTARENDSZER FÜGGVÉNYEINEK 
ELŐÁLLÍTÁSA
A következő feladatunk, hogy az scs(t) és a geometriai elrendezés 
ismeretében a forgó 123 rendszert leíró szög-, szögsebesség- és szög
gyorsulásfüggvényeket meghatározzuk.
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Ehhez először a 4b. ábra szerinti, a C ponthoz tartozó helyvektor 
hosszát kell megadjuk:

� (13)

Ennek birtokában a forgó koordinátarendszer szögfüggvénye:

 
 

� (14) 

geometriai összefüggéssel származtatható.
A szögsebesség – ω(t) – és a szöggyorsulás – β(t) – ennek az egy-, 

illetve a kétszeres deriváltjai:

 
 
 
 

 ,

� (15)

 
 
	  

 
 
 
 

 .

� (16)

Ne feledjük, hogy a kapott függvények valójában az ω(t) és a β(t) 
vektorok z szerinti skalár komponensei! A kapott függvények tömör 
leírásukban is eléggé komplexek, de vegyük észre, hogy a látszóla-
gos pálya egyenletének analitikus megadásához elégséges csupán 
a  szögelfordulásra (14) vonatkozó egyenlet ismerete. A  látszólagos 
pálya meghatározásának egy másik módszere lehet a  forgó, mint 
nem inerciarendszerek (részletesebben [5] tanulmányban), járulé-
kos d’Alambert-féle gyorsuláskomponenseinek meghatározása, eh-

a)

b)

4. ÁBRA. A léptetőmechanizmus elrendezése és jelölései – a) és b) ábrák.  
A vastagon szedett függvények vektorok, a vékonyak az adott ponthoz tartozó 
helyvektor abszolút értékei, skalárok (A szerző szerkesztése)

TANULMÁNYOK

valódi pálya

látszólagos pálya
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hez viszont szükségesek a szögelfordulás-függvény első és második 
deriváltjai.

Nézzük az  analitikus módszert, de ne feledjük, hogy a  (14) φ(t) 
függvény előállításához is kétszeres integrálás után jutottunk el, 
ezért az  itt következők csak akkor relevánsak, ha scs(t) analitikusan 
előállítható.

Tartozzon a csúszka mozgatásának kezdő időpillanatához (t1) egy 
ϱ1 hosszúságú és φ1 szöggel jellemzett helyvektor. Képezzük most 
a ψ(t) szögfüggvényt, amely a valódi pályapont t szerinti aktuális 
értékéhez rendel egy z körüli forgatási szöget. Ez a szög nem más, 
mint az xyz álló és az 123 forgó koordinátarendszer által bezárt szög. 
Mivel a látszólagos és a valódi pálya t1-ben vett pontjai (így a két ko-
ordináta-rendszer is) azonosak, ezért a forgató szögfüggvényre kap-
juk, hogy:

ψ(t) = φ(t) – φ1,� (17)

ahol:

φ1=φ(t1 ).� (18)

Tudjuk, hogy a vezetőcsap a valódi pályát járja be, és egységnyi zár-
sebességet feltételezve a pillanatnyi helyzetét megadó helyvektorra 
írhatjuk, hogy:
 
 

� (19)

Feladatunk innen annyi, hogy a  ϱv(t) vektort a ψ(t) függvénnyel 
meghatározottan elforgassuk. Ennek a  forgatásnak az  eredménye
képpen megkapjuk a  látszólagos pályát leíró ϱv123(t) vektort, amivel 
a feladatunk számítási részével el is készültünk.

A forgatást a z tengely körül végezzük, ekkor a forgató mátrix:
 
 
 

� (20)

Ezzel pedig a látszólagos pálya ϱv123(t) helyvektora:
 
 

 
 

� (21)

Látható, hogy ha ψ(t) függvényt kifejtjük, akkor meglehetősen 
bonyolult összefüggést kapunk, de a  kapott eredményeket a  CAD 
rendszerek közvetlenül kezelni képesek, ezért innentől könnyű az 
alkatrész megtervezése. (A kapott síkgörbe CAD reprezentációjának 
részletes bemutatásáról a [7] tanulmányban olvashatunk.)

Egy CAD rendszerben elkészített, de erősen leegyszerűsített me-
chanizmus végállapotát szemlélteti a  7. axonometrikus ábra. A  mé-
retezésből látható, hogy a  vezetőcsap a  mozgás végpillanatában is 
20 mm-re van az álló xyz rendszer x tengelyétől. A választott elren-
dezés mellett a vezetőcsap 40 mm-t mozdul el, illetve a vezérpálya 
a csúszkát y irányban 15 mm-t emeli.

NUMERIKUS MEGOLDÁS D’ALAMBERT-FÉLE GYORSULÁSOKKAL
Látható, hogy scs(t) ismeretében ψ(t) egyszerű geometriai összefüggé-
sekkel mindig megadható. Megadható analitikusan, ha scs(t) analitikus, 
és előállítható numerikusan, ha scs(t) pontpárosokkal adott. Tehát scs(t) 
valamilyen ismeretében a látszólagos pálya mindig előállítható, mert 
a geometriai összefüggések mindig leírhatók.

Ennek ellenére érdemes egy másik módszert is bevonni vizs-
gálódásainkba, mert ballisztikai alkalmazása mellett gépésze-
ti alkalmazása is számottevő. A  módszer lényege, hogy felírjuk 
a  mozgásokat a  nem inerciarendszer 123 koordinátarendszer-
ben, az álló xyz rendszerben észlelt valódi erők vagy gyorsulások 
felhasználásával.

Amennyiben az álló rendszert (1), a forgót (2) felső indexszel külön-
böztetjük meg, úgy a két vonatkoztatási rendszer közötti összefüg-
gést a következő írja le:

a(2)
rel = a(1)

akt + a(2)
száll + a(2)

Cor  ,� (22)

ahol:
a(2)

rel a 2-es rendszerben észlelt látszólagos (relatív) eredő gyorsulás, 
amely a test látszólagos pályagörbéjét és látszólagos sebességét adja 
úgy, mintha a mozgás inerciarendszerben történt volna,
a(1)

akt az inerciarendszerben észlelt valódi eredő gyorsulás,
a(2)

száll a 2-es rendszer első járulékos gyorsulása, a pályapont szállító-
gyorsulása,
a(2)

Cor a  2-es rendszer második járulékos fiktív gyorsulása a  Corio-
lis-gyorsulás. 

Célunk a mozgás leírása a kettes rendszerben, azaz a(2)
rel meghatá-

rozása, majd ezzel a vezetőcsap (mint szabad test) látszólagos moz-
gásának leírása.

A szállító komponenst felbontva írhatjuk, hogy:

5. ÁBRA. Nyolcadrendű polinomiális útfüggvény, annak sebessége, gyorsulása és rántása, 
67%-os zéruspont elhelyezkedés esetén (A szerző szerkesztése)

6. ÁBRA. Elfajult hatodrendű polinomiális útfüggvény, annak sebessége, gyorsulása 
és rántása, 67%-os zéruspont elhelyezkedés esetén (A szerző szerkesztése)
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a(2)
száll = a(2–1)

tran + a(2)
Eul + a(2)

centr ,� (23)

ahol:
a(2–1)

tran a 2-es rendszer transzlációs gyorsulása az 1-eshez képest,
a(2)

centr a 2-es rendszer centrifugális gyorsulása,
a(2)

Eul a 2-es rendszer Euler-féle gyorsulása,
Mivel a lengőkaros mechanizmusnál az origó közös, így a transzlá

ciós komponens zérus, ezért a  szállító gyorsulás a következőre egy- 
szerűsödik:

a(2)
száll = a(2)

Eul + a(2)
centr = β × r(2) – ω × (ω × r(2)),� (24)

ahol:
ω a 2-es rendszer szögsebesség vektora,
β a 2-es rendszer szöggyorsulás vektora.

Ez a mi feladatunknál egy vektorfüggvény, amelynek minden kom-
ponensét korábban meghatároztuk. Most már felső indexelések nélkül:

a(t)száll = β(t) × ϱv (t) – ω(t) × (ω(t) × ϱv (t).� (25)

A második járulékos gyorsuláskomponens a  Coriolis-gyorsulás, 
amely általánosan:

a(2)
Cor = 2 ∙ v(2) × ω,� (26)

és esetünkben:
 
 

 
,
� (27)

mivel most is egységnyi zársebességet rendeltünk a rendszerhez.
A d’Alambert-féle járulékos gyorsulásvektor tehát:

ad'Alamb (t) = a(t)száll + aCor (t),� (28)

ezzel a mozgásegyenleteink x és y irányban, külső erő nem lévén:

  ,
� (29)

  ,� (30)

10	 Az analitikus és a numerikus megoldás grafikonjai vonalvastagságon belül fedik egymást, ezért közös diagramban történő ábrázolásuktól eltekintünk.
11	 A felhasználók „újításaira” szép számmal találhatunk videó- és fotófelvételeket az orosz–ukrán háborúból. Gondoljunk az RPG–7 gránátvetőből indított gyalogsági ásókra  

vagy a szintén ebből a vetőből lőhető PG–7VR gránát „hatásfokozásaként” kézigránátokkal összebarkácsolt „karácsonyfákra”.

ahol:
ad'Alamb(t)[1] a d’Alambert-féle járulékos gyorsulásvektor x irányú skalár
összetevője,
ad'Alamb(t)[2] a d’Alambert-féle járulékos gyorsulásvektor y irányú skalár
összetevője.

A fenti differenciálegyenlet-rendszert numerikusan megoldva kapjuk 
meg a látszólagos pálya x-y pontpárosait. A centrifugális, az Euler-féle 
és a Coriolis-féle gyorsulások egyedi hatását, valamint összegződésüket 
– amely (a numerikus hibáktól eltekintve) azonos pályaalakot szolgáltat 
az analitikusan kiszámítottal10 – a 8. ábra illusztrálja.

ÖSSZEGZÉS
Belátható, hogy egy géppuska üzemszerű működése esetén is jelen-
tős terhelés éri a léptető mechanizmusát a viszonylagosan nagy zár-
sebesség miatt. Azonkívül, a mozgatáshoz szükséges erő jelentősen 
megnövekedhet a  heveder nem előírásszerű elrendezése, valamint 
(a nem rendeltetésszerű használatból adódóan) a  heveder szabad 
hosszának túlzott értéke miatt. Egy fegyver tervezési szakaszában 
ezeket a  szempontokat a  konstruktőrnek szem előtt kell tartania, 
még akkor is, ha a terhelés pontos értékeit megmondani nem tudja. 
Nem tudja, mert az alkalmazó „találékonyságának” nincsenek korlát-
jai, hangozzék is ez bármilyen furcsán11. Amit viszont a tervező tehet 
és tennie is kell, az az, hogy meghatározza a terhelési szempontok 
szerint optimalizált pályaalakokat, elősegítve ezzel a fegyver meg-
bízható és hibamentes működését.� •

7. ÁBRA. A léptetőszerkezet axonometrikus nézete a léptetés végén  
(A szerző szerkesztése)
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8. ÁBRA. A d’Alambert-gyorsulásokkal számított pálya  
és ez egyes komponenseivel kialakuló pályaalakok (A szerző szerkesztése)
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